

CISMA Srl - Società di Ingegneria	www.cisma.it - info@cisma.it
sede legale e operativa - NOI Techpark via Ipazia 2 - 39100 Bolzano +39 0471.1727086	sede operativa - Palazzo Stella via A. Degasperi 77 - 38123 Trento +39 0461.1637648
P. IVA 02453250215	cisma@pec.cisma.bz.it

Stima delle concentrazioni medie annue di NO₂ e PM10 da fonti lineari sulla città di Bolzano

Confronto tra lo stato attuale e gli scenari derivanti dal PUMS

Committente	Descrizione
Comune di Bolzano Stadtgemeinde Bozen	Stima delle concentrazioni medie annue di NO_2 e PM10 sulla città di Bolzano con particolare attenzione al contributo del traffico veicolare sulla rete viaria principale comunale – confronto tra stato attuale e scenari derivanti dal PUMS.

Documento	Data	Autori
2017/AMB/20/Bolzano	22/07/2019	Ing. Gianluca Antonacci Ing. Chiara Lora
		Responsabile
		Ing. Gianluca Antonacci

Indice dei contenuti

1. Introduzione allo studio di screening	1
1.1. Il PUMS di Bolzano in funzione del presente screening	1
1.2. Definizione della procedura	
2. Metodologia	4
2.1. Sorgente traffico strade principali: modello R-LINE per "screening"	
2.2. Altre sorgenti: modello CALPUFF a scala locale	
2.3. Scenari di traffico per il comune di Bolzano	
2.3.1. Scenario 0 - Stato attuale (2018)	
2.3.2. Scenario 1 – Business as usual (2023)	
2.3.3. Scenario 2 – Interventi programmati (2023)	
3. Calcolo delle emissioni da traffico delle strade principali	
3.1. Elaborazione del TGM	
3.1.1. Rete stradale ed emissione	
3.2. Parco macchine	
3.2.1. Consistenza parco circolante al 2018	
3.2.2. Consistenza parco circolante al 2023 e politiche di parziale divieto	
circolazione	, u. 15
3.3. Stima delle emissioni	
4. Simulazioni di dispersione	
4.1. Dominio di calcolo	
4.2. Dati meteorologici	
5. Risultati	
5.1. Concentrazioni medie annue di NO ₂ da sorgente traffico strade principa	
5.2. Concentrazioni medie annue di NO_2 da sorgente traffico strade della Az	
5.3. Concentrazioni medie annue di NO_2 da altre sorgenti	
5.4. Concentrazioni medie annue di NO ₂ totali	
5.5. Confronto tra le concentrazioni di NO ₂ per gli scenari studiati	
6. Tavole	25
O. Idvolc	23
Indice delle tabelle	
Tabella 1: Strade considerate come fonti emissive lineari e relative caratteristi	
Tabella 2: Percorrenze totali e differenza percentuale rispetto allo stato attuale	
strade principali di Bolzano oggetto dello studio di screening	11
Tabella 3: Consistenza delle autovetture immatricolate in provincia nel 2018	13
Tabella 4: Percentuale delle macroclassi di veicoli, parco circolante provinciale	201814
Tabella 5: Dettaglio delle emissioni da traffico per le principali strade di Bolzan	o, per gli
scenari di screening	18
Tabella 6: Confronto rispetto allo scenario 0 (stato attuale al 2018) degli impat	ti del NO2
sugli scenari futuri sul territorio del comune di Bolzano	
Tabella 7: Confronto tra lo scenario futuro degli interventi programmati rispett	o allo
scenario 1 (business as usual 2023) degli impatti del NO2 sul territorio del com	une di
Bolzano	

Indice delle figure

Figura 1: Dominio di calcolo e reticolo di strade utilizzato come sorgenti emissive di	
traffico principale per gli scenari di screening	5
Figura 2: Curva traffico medio giornaliero nella zona di Bolzano Centro (fonte TPS, PUMS 2019)	
Figura 3: Mappa del Traffico Giornaliero Medio per lo scenario 0	
Figura 4: Distribuzione del parco macchine altoatesino per gli anni 2017 e 2018	
Figura 5: distribuzione percentuale delle classi euro dei parchi macchine per i tre scenar	i
considerati	16

1. Introduzione allo studio di screening

I presente studio ha lo scopo di valutare l'impatto dell'inquinamento da traffico sulla città di Bolzano, ponendo l'attenzione a quello che avviene in termini di emissione e dispersione all'interno della struttura urbana in diversi scenari di studio, il primo riferito lo stato attuale, al 2018, e gli altri due riferiti a possibili scenari futuri, al 2023.

Le emissioni veicolari hanno origine al livello del suolo, al contrario di quello che avviene per le emissioni industriali e da riscaldamento che sono immesse in atmosfera al di sopra della cosiddetta "canopy urbana". Ne consegue che la capacità diluitiva dell'atmosfera nel primo caso è molto minore, in quanto la massa d'aria in sede stradale, in presenza di edifici ai lati, è molto meno ricircolata. Poiché gli insediamenti urbani sono spesso posizionati fronte strada, i recettori (gli abitanti) sono in diretta prossimità degli emettitori (il traffico veicolare). Si aggiunga inoltre che l'inquinamento da traffico è caratterizzato da emissioni di ossidi di azoto (NO e NO₂). Il biossido di azoto allo stato attuale costituisce uno dei temi principali per quanto riguarda l'impatto sulla qualità dell'aria in area urbana. Oltre all'inquinante di riferimento NO₂, l'analisi è stata effettuata anche per le polveri (PM10).

1.1. Il PUMS di Bolzano in funzione del presente screening

Nella primavera 2019 il Comune di Bolzano ha adottato il nuovo Piano Urbano della Mobilità Sostenibile (PUMS), strumento di pianificazione strategica del sistema della mobilità urbana che ha validità 10 anni. Come riportato dalla delibera di Giunta di adozione del PUMS¹ "il Piano ribalta l'approccio tradizionale della pianificazione del traffico e punta a far muovere le persone piuttosto che far circolare le automobili attraverso la progressiva attuazione di uno scenario progettuale che si contraddistingue per la sua sostenibilità ambientale, economica e sociale". La delibera sottolinea che "lo scenario delineato si pone come obbiettivo principale e prioritario la riduzione della mobilità automobilistica e le connesse emissioni inquinanti" puntando su tre strategie integrate: "previsione di un potenziamento della viabilità di reciproca interconnessione tra le principali direttrici di traffico extraurbano, autostrada inclusa, in modo da alleggerire la rete stradale urbana", "consentire la riserva di capacità a favore del trasporto pubblico sulla viabilità interessata dai percorsi della rete portante di trasporto pubblico urbano" ed inoltre prevedere parcheggi di interscambio in corrispondenza delle principali porte di accesso alla città e punti interconnessione tra trasporto pubblico urbano e rete ferroviaria integrata. Altri punti del PUMS riquardano la mobilità ciclopedonale (completamento della rete di piste ciclabili e creazione di rete di parcheggi per biciclette), la riorganizzazione dell'accessibilità motorizzata e della sosta su strada (attuazione pratica demandata al Piano Generale del Traffico Urbano PGTU), elaborazione degli obiettivi e delle strategie generali sul versante della logistica urbana, e l'installazione di sistemi di monitoraggio del traffico che supportano l'info-mobilità.

Pertanto all'interno del PUMS si delinea uno scenario di progetto che comprende tutti gli interventi su tutte le componenti di mobilità e di traffico con un arco temporale di 10 anni. Mentre per il presente studio di screening si sono considerati due periodi: il primo relativo all'anno 2018, al quale si riferisce lo scenario qui definito come "attuale", ed il secondo relativo all'anno 2023, al quale si riferiscono i due scenari futuri in seguito presentati in dettaglio, capitolo 2.3. Per tutti gli scenari studiati, in entrambi i periodi, si sono individuati i flussi di traffico medio giornaliero per la viabilità urbana principale a partire dai dati forniti ditta TPS² che ha elaborato il PUMS del Comune. In aggiunta si sono considerati i flussi di traffico medio giornaliero delle principali strade extraurbane (MeBo, A22, SS12) che attraversano la città e generano un impatto rilevante sulla qualità dell'aria cittadina. Inoltre è stato caratterizzato il parco circolante altoatesino al 2018 partendo da dati provinciali forniti da Alto Adige Riscossioni e corretti da analisi ad hoc per poi essere opportunamente proiettati all'anno 2023.

Nell'estate 2018 era già stata redatta la prima parte dello studio di screening per il comune di Bolzano relativo allo stato di fatto al 2018, e in tale studio si era introdotto anche il confronto con i dati di qualità dell'aria per l'inquinante NO2 derivante da misure con campionatori passivi condotte da APPA. Questa prima parte dello screening, che ha compreso anche la stima delle concentrazione medie annue di inquinante, si è posto come base di partenza per il completamento della presente seconda parte di screening che ha preso origine dalle analisi effettuate a valle dalla redazione del nuovo PUMS comunale.

Pertanto pur avendo già caratterizzato, nella prima parte dello screening, le emissioni e le concentrazioni di inquinante per l'anno 2018 a Bolzano, per questa seconda parte dello screening si è reso necessario studiare nuovamente l'inquinamento dello scenario al 2018 per poter garantire la coerenza del confronto e della stima delle variazioni degli scenari al 2023.

1.2. Definizione della procedura

Nei paragrafi successivi sono presentate le seguenti fasi di lavoro: nel capitolo 2 Metodologia sono individuate delle sorgenti emissive con studio di screening specifico sulle strade principali e le altre sorgenti emissive. Inoltre sono presentati gli scenari di traffico per il comune di Bolzano, per lo stato attuale al 2018 e per due ipotesi degli scenari futuri a 2023.

Nel capitolo 3 Calcolo delle emissioni da traffico delle strade principali analisi e attribuzione del traffico giornaliero medio al grafo stradale, studio del parco circolante altoatesino 2018 e ipotesi di rinnovo del parco per il 2023 (per le strade urbane, extra urbane e per l'autostrada), quindi stima delle emissioni di NO_X e PM10 derivanti dalle strade principali tramite modello Copert V.

Nel capitolo 4 Simulazioni di dispersione è descritto il modello di dispersione basato su R-Line: dati meteo, dominio di calcolo e stima delle concentrazioni media annua di NO_2 e PM10.

Nel capitolo 5 Risultati si presenta l'analisi dei risultati di concentrazione media annua di NO₂ derivanti dalle diverse sorgenti emissive, i confronti tra lo scenario

dello stato attuale e gli stati futuri e la mappatura delle concentrazioni sul territorio comunale con confronto dei risultati.

Nel capitolo 6 Tavole è presentato l'elenco delle tavole allegate al presente lavoro.

2. Metodologia

2.1. Sorgente traffico strade principali: modello R-LINE per "screening"

Il calcolo delle emissioni da traffico e dispersione degli inquinanti in area urbana è stato effettuato utilizzando un modello di "screening", come già eseguito per la prima parte dello studio di screening riferita al 2018. Il modello di screening consiste in un metodo computazionalmente semplificato tale da essere applicato in maniera speditiva ma con elevato dettaglio spaziale nell'area cittadina del comune di Bolzano. La scelta di questo approccio è dovuto ai seguenti vincoli e requisiti:

- necessità di avere una risoluzione spaziale molto raffinata con griglia di 20 m per poter vedere il dettaglio all'interno della sede stradale. Modelli di calcolo con risoluzione inferiore, infatti, non sono in grado di esplicitare l'effetto barriera degli edifici quando essi hanno dimensione molto inferiore alla griglia di calcolo. Maggiore risoluzione significa però costo computazionale significativamente maggiore, da cui la scelta di un algoritmo che sia più accurato nel campo vicino della dispersione (dove è il focus del lavoro) e semplificato altrove;
- necessità di individuare le principali strade che sono fonti di emissioni di inquinanti da traffico all'interno del comune, le quali possono essere studiate in diversi scenari di futura evoluzione, al fine di valutare il loro apporto rispetto alle altre fonti di emissione cittadine;
- volontà di mantenere compatibilità con le mappe di concentrazione prodotte con modello generalmente più raffinato ma meno definito spazialmente. Si fa in particolare riferimento ai risultati delle simulazioni di dispersione di inquinanti ottenute sulla conca di Bolzano per mezzo del modello CALPUFF nel lavoro "Calcolo delle concentrazioni nel sottodominio urbano / comprensoriale 2E";
- possibilità di interfacciamento del modello di calcolo con un software GIS in maniera da valutare in maniera efficace la spazializzazione dei campi di concentrazione anche dal punto di vista visivo.

Il modello di screening adottato è basato sul software R-LINE³, riadattato per il presente studio di emissione e ricaduta di inquinanti da traffico veicolare, con una modifica esclusivamente per la parte di input/output e definizione delle tipologie stradali basato su modello CALINE⁴ (al fine di rendere più semplice l'immissione di dati e la visualizzazione dei risultati).

Il calcolo con il modello di screening è riferito alle sole emissioni delle sorgenti lineari (viabilità) delle strade principali, identificate convenzionalmente come quelle strade con traffico giornaliero medio superiore a 8000 veh/d, e delle strade

^{3. &}lt;a href="https://www.cmascenter.org/r-line/">https://www.cmascenter.org/r-line/

^{4.} https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models#caline

dove gli scenari futuri, di seguito descritti nel dettaglio, porteranno delle variazioni significative di traffico tra il 2018 e il 2023, per cui risulta interessante analizzarle. Nella Figura 1 e in allegato (capitolo 6 - Tavola 1 e 2) è presentata la mappa della viabilità principale studiata negli scenari di screening e il relativo dominio di calcolo. La superstrada MeBo, il tratto cittadino della A22 e gli svincoli di Bolzano Sud, benché non classificabili come strade urbane, sono stati inseriti nel presente studio di screening in quanto generano importanti contributi emissivi che bisogna inserire all'interno del modello di dispersione per stimare le concentrazioni medie annue, in modo che sia garantita una coerenza con le reali concentrazioni di inquinanti, derivanti dal traffico, che insistono sulla città di Bolzano. Le emissioni derivanti dall'asse autostradale sono state calcolate usando dati compatibili con quanto contenuto nell'inventario delle emissioni provinciali (INEMAR).

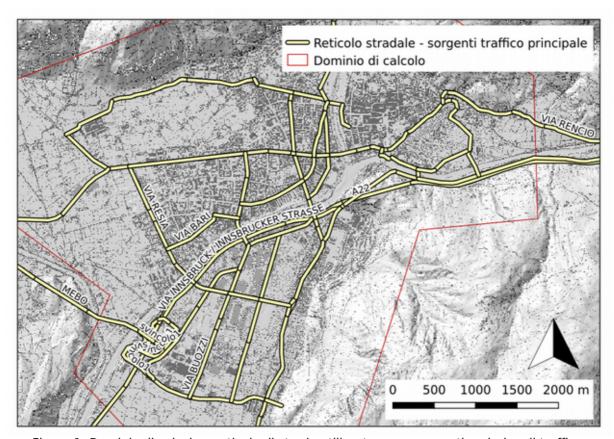


Figura 1: Dominio di calcolo e reticolo di strade utilizzato come sorgenti emissive di traffico principale per gli scenari di screening.

2.2. Altre sorgenti: modello CALPUFF a scala locale

L'impatto di tutte le altre fonti di inquinamento, diverse dal traffico da sorgenti lineari principali, è derivato direttamente dal calcolo eseguito tramite modello CALPUFF sulla conca di Bolzano nel precedente incarico di studio della dispersione degli inquinanti ("Calcolo delle concentrazioni nel sottodominio

urbano / comprensoriale 2E"). In particolare, sono derivate le mappe relative alle emissioni da sorgenti di: traffico diffuso (strade secondarie), riscaldamento, industria e artigianato e fondo ambientale (incluso il trasporto degli inquinanti dall'esterno del dominio di calcolo).

Il contributo della concentrazione di inquinanti, all'interno della zona di studio, derivante da tali altre sorgenti emissive vengono sommate alle concentrazioni derivanti dalle sorgenti di traffico delle strade principali per ottenere le concentrazioni totali di NO₂ e PM10.

2.3. Scenari di traffico per il comune di Bolzano

A partire dall'analisi della situazione attuale dei piani e dei programmi previsti dal comune di Bolzano sulla mobilità e sul traffico e dalle analisi condotte nel recente PUMS del Comune, si sono derivati tre scenari per l'analisi di screening che sono descritti di seguito.

2.3.1. Scenario 0 - Stato attuale (2018)

Rappresenta la situazione di partenza, rispetto la quale sono calcolate le riduzioni di concertazione di inquinante in aria ambiente stimate dagli scenari futuri.

Punti di partenza sono l'analisi del traffico circolante sul complesso grafo stradale comunale (fornito dalla ditta PTS, relativi allo stato attuale del PUMS) e il calcolo delle relative emissioni sulla rete viaria principale tramite metodologia COPERT⁵. Tali emissioni sono funzione del parco circolante nell'anno 2018 per il quale è stata condotta una analisi specifica.

Conseguentemente, tramite il modello di dispersione, si stimano le concentrazioni degli inquinanti nella zona di studio, caratterizzando così lo scenario 0.

2.3.2. Scenario 1 - Business as usual (2023)

Nello scenario futuro "business as usual" si ipotizza l'impossibilità di realizzare le politiche e gli interventi già programmati da altri piani o presenti nello scenario di progetto del PUMS: pertanto l'assetto dell'offerta attuale di trasporto rimane invariato rispetto al 2018. Mentre si inserisce la variazione della domanda di trasporto risultante dalla principali evoluzioni di: parco macchine circolante (naturale rinnovo dello stesso), introduzione del divieto di circolazione per i veicoli EURO 0, EURO 1, EURO 2 diesel e EURO 3 diesel⁶, e l'aumento del traffico circolante sulla viabilità cittadina. Si applica quindi un trend costante di aumento

COPERT è la metodologia consigliata dall'Agenzia Europea per l'Ambiente come strumento per la valutazione delle emissioni da trasporto stradale nell'ambito della metodologia standard CORINAIR.

^{6.} Ordinanza del 03.09.2018 - Prot. 0145326/2018, "Misure per la limitazione dell'inquinamento dell'aria derivante dalle emissioni di NO_X - Ossidi di azoto adottate in accordo con il Piano provinciale della qualità dell'aria ed il Programma per la riduzione dell'inquinamento da NO_2 2018-2023"; in vigore dal 01.07.2019. Dal lunedì al venerdì, festivi esclusi, il divieto di circolazione, quale misura preventiva dalle ore 7.00 alle ore 10.00 e dalle ore 16.00 alle ore 19.00.

del traffico, in base al trend osservato negli ultimi anni, ed ipotizzato pari al 1% annuo, per ogni anno dal 2018 al 2023.

2.3.3. Scenario 2 - Interventi programmati (2023)

Nel secondo scenario futuro si analizza la parziale realizzazione degli interventi programmati in altri piani che comporta una variare leggermente l'offerta di trasporto. In particolare si suppone che l'aumento della domanda (già prevista nello scenario 1) sia compensata dalla diversione modale dell'offerta di trasporto che sposta parte del traffico privato verso quello pubblico, in modo da compensare il teorico aumento del 1% annuo di traffico. La domanda di trasporto è influenzata sia dal naturale rinnovo del parco macchine circolante, sia dall'introduzione del divieto di circolazione per i veicoli EURO 0, EURO 1, EURO 2 diesel e EURO 3 diesel e, in questo scenario anche, EURO 4 diesel.

3. Calcolo delle emissioni da traffico delle strade principali

3.1. Elaborazione del TGM

Per ogni scenario, sopra presentato, sono disponibili i dati di traffico nell'ora di punta sul complesso grafo stradale comunale (fornito dalla ditta PTS). Tramite le elaborazioni di tali dati si ottiene un grafo stradale più semplificato e una stima del Traffico Giornaliero Medio (TGM – veicoli/giorno).

All'interno delle analisi di screening, al fine di ottenere degli scenari di dispersione degli inquinanti derivanti dal traffico delle strade principali, si è proceduto alla riduzione del numero di archi stradali selezionando solo quelli con il maggior numero di veicoli circolanti.

Tramite la curva dell'andamento del traffico medio sulle 24 h, derivante dal PUMS 2019 (Figura 2), si stima la percentuale dell'ora di picco rispetto al totale, calcolata pari a 7.6% del TGM. Tramite tale percentuale è stato possibile stimare per ogni arco il valore di TGM utile al fine del calcolo delle emissioni.

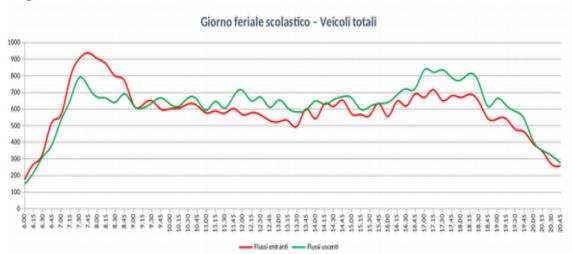


Figura 2: Curva traffico medio giornaliero nella zona di Bolzano Centro (fonte TPS, PUMS 2019).

3.1.1. Rete stradale ed emissione

In Tabella 1 si riporta l'elenco completo dei tratti stradali modellati come fonti emissive principali da traffico nello screening con la relativa lunghezza, velocità media del transito e Traffico Giornaliero Medio nei tre scenari studiati.

La superstrada MeBo, il tratto cittadino della A22 e gli svincoli di Bolzano Sud, benché non classificabili come strade urbane, sono stati inseriti all'interno della rete stradale considerata per una questione di continuità del modello di calcolo di dispersione, applicato in seguito. I dati relativi a queste tre strade sono riportati in fondo alla tabella.

			Scenario 0	Scenario 1	Scenario 2
Nome Strada	Lunghezza	Velocità media	TGM	TGM	TGM
	[m]	[km/h]	[veh/d]	[veh/d]	[veh/d]
CORSO DELLA LIBERTA / FREIHEITSSTRASSE	887	33	8'995	9'454	8'995
CORSO ITALIA / ITALIENALLEE	620	35	12'264	12'890	12'264
GALLERIA DEL VIRGOLO / VIRGL TUNNEL	803	44	23'482	24'680	23'482
PIAZZA ADRIANO	60	35	15'602	16'398	15'602
PIAZZA GIUSEPPE MAZZINI / GIUSEPPE- MAZZINI-PLATZ	124	25	8'037	8'447	8'037
PIAZZA GIUSEPPE VERDI / GIUSEPPE-VERDI- PLATZ	218	44	18'599	19'548	18'599
PIAZZA GRIES / GRIESER PLATZ	71	41	11'767	12'367	11'767
PIAZZA VITTORIA	130	25	11'270	11'845	11'270
PONTE DRUSO / DRUSUSBRCKE	334	25	14'935	15'697	14'935
PONTE PALERMO / PALERMOBRCKE	365	25	15'955	16'769	15'955
PONTE RESIA	143	25	15'223	16'000	15'223
PONTE ROMA / ROMBRCKE	254	25	28'613	30'073	28'613
PONTE TALVERA / TALFERBRCKE	183	25	14'463	15'201	14'463
PONTE VIRGOLO	113	44	16'859	17'719	16'859
SS 42 / SS42	247	55	15'380	16'165	15'380
VIA ALBERT EINSTEIN / ALBERT-EINSTEIN- STRASSE	1'643	46	26'011	27'337	26'011
VIA ALESSANDRO VOLTA / ALESSANDRO- VOLTA-STRASSE	1'196	44	7'812	8'211	7'812
VIA ANTONIO PACINOTTI / ANTONIO- PACINOTTI-STRASSE	625	44	17'091	17'963	17'091
VIA ANTONIO ROSMINI / ANTONIO-ROSMINI- STRASSE	319	25	4'516	4'746	4'516
VIA ARMANDO DIAZ / ARMANDO-DIAZ- STRASSE	192	25	11'374	11'954	11'374
VIA BARI	725	25	8'599	9'038	8'599
VIA BRENNERO	107	44	13'757	14'459	13'757
VIA BUOZZI	1'343	44	10'770	11'320	10'770
VIA CAGLIARI	285	25	10'170	10'689	10'170
VIA CASTEL FIRMIANO / SIGMUNDSKRONER STRASSE	775	55	21'911	23'029	21'911
VIA CLAUDIA AUGUSTA	1'688	38	11'962	12'572	11'962
VIA DEL MACELLO	1'467	44	12'393	13'025	12'393
VIA ENRICO MATTEI / ENRICO-MATTEI- STRASSE	793	48	8'791	9'240	8'791
VIA EVANGELISTA TORRICELLI / EVANGELISTA-	269	44	24'738	26'000	24'738

			Scenario 0	Scenario 1	Scenario 2
Nome Strada	Lunghezza	Velocità media	TGM	TGM	TGM
	[m]	[km/h]	[veh/d]	[veh/d]	[veh/d]
TORRICELLI-STRASSE					
VIA FIRENZE	351	40	6'296	6'617	6'296
VIA GALILEO GALILEI / GALILEO-GALILEI- STRASSE	879	44	29'895	31'420	29'895
VIA GIUSEPPE GARIBALDI / GIUSEPPE- GARIBALDI-STRASSE	294	44	12'461	13'097	12'461
VIA GUGLIELMO MARCONI / GUGLIELMO- MARCONI-STRASSE	207	44	16'453	17'292	16'453
VIA INNSBRUCK / INNSBRUCKER STRASSE	5'333	45	17'647	18'548	17'647
VIA LORENZ BHLER / LORENZ-BHLER- STRASSE	727	55	17'435	18'324	17'435
VIA LUIGI CADORNA / LUIGI-CADORNA- STRASSE	919	25	7'494	7'876	7'494
VIA LUIGI GALVANI / LUIGI-GALVANI-STRASSE	1'273	44	13'490	14'178	13'490
VIA MASO DELLA PIEVE / PFARRHOFSTRASSE	2'044	38	14'866	15'624	14'866
VIA MAYR NUSSER	780	44	12'962	13'623	12'962
VIA MERANO / MERANER STRASSE	660	36	18'835	19'796	18'835
VIA OLTRADIGE / UEBERETSCHER STRASSE	952	55	15'380	16'165	15'380
VIA PALERMO / PALERMOSTRASSE	798	25	10'482	11'016	10'482
VIA PIANI DI BOLZANO	275	44	13'534	14'224	13'534
VIA RENCIO	2'251	44	9'429	9'910	9'429
VIA RENON	79	44	11'034	11'597	11'034
VIA RENON / RITTNER STRASSE	582	44	11'662	12'257	11'662
VIA RESIA	1'473	40	12'398	13'031	12'398
VIA ROMA / ROMSTRASSE	870	31	16'342	17'176	16'342
VIA SAN MAURIZIO / MORITZINGER WEG	935	41	14'097	14'816	14'097
VIA SAN QUIRINO	542	25	6'542	6'876	6'542
VIA TORINO	810	25	8'442	8'873	8'442
VIA TORRICELLI	338	44	27'330	28'724	27'330
VIA VENEZIA	516	25	6'950	7'305	6'950
VIA VINCENZO LANCIA / VINCENZO-LANCIA- STRASSE	832	44	14'254	14'981	14'254
VIA VITTORIO VENETO / VITTORIO-VENETO- STRASSE	852	41	14'097	14'816	14'097
VIA WERNER VON SIEMENS / WERNER-VON- SIEMENS-STRASSE	475	44	28'338	29'784	28'338
VIALE DRUSO	943	30	13'218	13'892	13'218
VIALE DRUSO / DRUSUSALLEE	1'666	36	18'213	19'143	18'213
VIALE TRIESTE	599	25	5'707	5'998	5'707
SVINCOLI BOLZANO SUD	3'085	40	16'492	17'333	17'333
MEBO	2'788	85	40'486	42'551	42'551
A22	9'697	120	36'100	38'700	38'700

Tabella 1: Strade considerate come fonti emissive lineari e relative caratteristiche.

Per ogni arco stradale partendo dal valore di TGM e moltiplicandolo per la lunghezza dell'arco si ottiene la 'percorrenza' della strada ((veh km)/d), che è

una grandezza estensiva del traffico. In Tabella 2 sono riportate le somme delle percorrenze di tutte le strade, per cui si osserva rispetto allo scenario 0: per la rete cittadina delle strade un aumento per lo scenari 1, e rimane costante il traffico per lo scenario 2, mentre per le strade extraurbane si ha un aumento uguale per entrambi gli scenari futuri.

		Scenario 0	Scenario 1	Scenario 2
Percorrenza totale rete cittadina	[(veh km)/d]	846'623	889'815	846'623
Differenza di percorrenza rispetto lo scenario 0			5.1%	0.0%
Percorrenza totale rete extraurbana (MeBo A22 Svincoli)	[(veh km)/d]	93'078	98'584	98'584
Differenza di percorrenza rispetto lo scenario 0			5.9%	5.9%

Tabella 2: Percorrenze totali e differenza percentuale rispetto allo stato attuale delle strade principali di Bolzano oggetto dello studio di screening.

Le stesse strade elencate nella tabella precedente sono presentate graficamente nelle tavole in allegato (capitolo 6 - Tavole 3, 4 e 5) e qui, a titolo di esempio in Figura 3, si riporta per lo scenario 0 la rappresentazione degli archi stradali con spessore variabile a seconda del TGM.

Le emissioni di ciascun tratto stradale, per gli inquinanti NO_{\times} e PM10, sono quindi ricavate sulla base della metodologia di calcolo Copert V che considera: i dati di traffico medio giornaliero, la velocità media e il parco circolante medio per ogni scenario, come di seguito descritto.

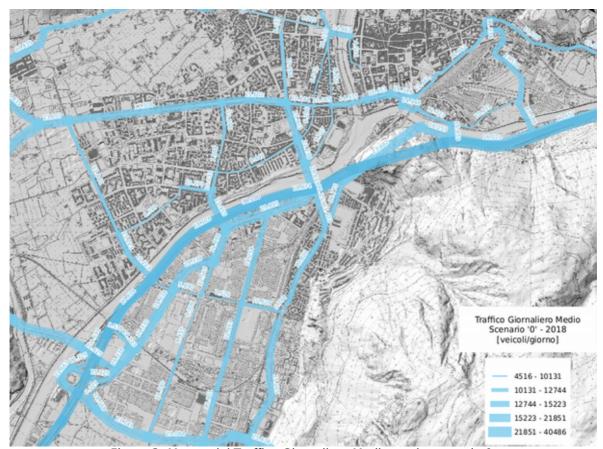


Figura 3: Mappa del Traffico Giornaliero Medio per lo scenario 0.

3.2. Parco macchine

Partendo dai dati dei veicoli immatricolati in Provincia di Bolzano si può ricostruire il parco circolante medio provinciale, solo dopo aver osservato e corretto il numero di autovetture provinciali. Infatti negli ultimi anni è aumentato di molto il numero di veicoli che vengono immatricolati in Provincia di Bolzano da parte di ditte di autonoleggio che però lavorano a livello nazionale. Si è valutato di correggere la base dati dalla quota parte di veicoli classificati come "a noleggio" per non distorcere le percentuali del parco macchine effettivamente circolante.

3.2.1. Consistenza parco circolante al 2018

Il parco macchine utilizzato per il calcolo delle emissioni da traffico è aggiornato a dicembre 2018 e fa riferimento all'immatricolato provinciale.

Il totale dei mezzi immatricolate nel 2018 in provincia sono circa 670'000 ma di queste solo il 58% risulta realmente circolante sul territorio provinciale (circa 390'000 mezzi) in quanto esclusi i mezzi "a noleggio". La maggior parte dei mezzi circolanti in provincia sono autovetture, e in Tabelle 3 sono riportate suddivise le vetture per alimentazione e classe EURO.

52'801

304'249

5'033

Autovetture Euro Benzina Gasolio Altro Totale 0 15'357 2'457 428 18'242 709 224 1 4'224 5'157 2 14'340 5'722 471 20'533 3 11'487 22'135 434 34'056 4 45'468 44'453 4'313 94'234 5 49'967 22'452 1'774 74'193

30'835

<u>156'278</u>

0

2'242

5'033

14'919

Tabella 3: Consistenza delle autovetture immatricolate in provincia nel 2018⁷.

19'724

<u>133'052</u>

0

Ν

Totale

Di seguito, Tabella 4, si riportano per ciascuna delle macroclassi di veicoli (autovetture, mezzi commerciali leggeri, mezzi pesanti e il totale) le percentuali di tipo di combustibile ed alimentazione

^{7.} Per Alimentazione "altro" si intende metano, GPL, elettrico, ibrido e miscela per i motocicli.

Autovettu	<u>re</u>			
Euro	Benzina	Gasolio	Altro	Totale
0	5%	1%	0%	6%
1	1%	0%	0%	2%
2	5%	2%	0%	7%
3	4%	7%	0%	11%
4	15%	15%	1%	31%
5	7%	16%	1%	24%
6	6%	10%	1%	17%
N	0%	0%	2%	2%
<u>Totale</u>	<u>44%</u>	<u>51%</u>	<u>5%</u>	<u> 100%</u>
Commerci	ali leggeri (<	<3.5 t)		
Euro	Benzina	Gasolio	Altro	Totale
0	1.2%	4.5%	0.1%	5.7%
1	0.3%	2.2%	0.0%	2.5%
2	0.9%	6.9%	0.0%	7.8%
3	0.9%	15.1%	0.2%	16.2%
4	1.4%	21.4%	0.6%	23.4%
5	0.9%	23.0%	0.4%	24.3%
6 Totale	0.7% 6.2%	18.9% 92.0%	0.4% 1.8%	20.0% 100.0%
iotaie	0.2 /0	J2.0 /0	1.0 /0	100.070
Commerci	ali pesanti (> 3.5t)		
Commerci Euro	ali pesanti (Benzina	> 3.5t) Gasolio	Altro	Totale
	<u>-</u>		Altro 0.0%	Totale 11.2%
Euro	Benzina	Gasolio		
Euro 0	Benzina 0.0%	Gasolio 11.2%	0.0%	11.2%
Euro 0 1	Benzina 0.0% 0.0%	Gasolio 11.2% 2.5%	0.0% 0.0%	11.2% 2.5%
Euro 0 1 2	Benzina 0.0% 0.0% 0.0%	Gasolio 11.2% 2.5% 12.6%	0.0% 0.0% 0.0%	11.2% 2.5% 12.6%
Euro 0 1 2 3	Benzina 0.0% 0.0% 0.0% 0.0%	Gasolio 11.2% 2.5% 12.6% 21.6%	0.0% 0.0% 0.0% 0.0%	11.2% 2.5% 12.6% 21.6%
Euro 0 1 2 3 4	Benzina 0.0% 0.0% 0.0% 0.0% 0.0%	Gasolio 11.2% 2.5% 12.6% 21.6% 5.9%	0.0% 0.0% 0.0% 0.0% 0.0%	11.2% 2.5% 12.6% 21.6% 5.9%
Euro 0 1 2 3 4 5	Benzina 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Gasolio 11.2% 2.5% 12.6% 21.6% 5.9% 25.1%	0.0% 0.0% 0.0% 0.0% 0.0%	11.2% 2.5% 12.6% 21.6% 5.9% 25.1%
Euro 0 1 2 3 4 5	Benzina 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Gasolio 11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 20.9%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 21.0%
Euro 0 1 2 3 4 5 6 Totale	Benzina 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Gasolio 11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 20.9%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 21.0%
Euro 0 1 2 3 4 5 6 <i>Totale</i>	Benzina 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	Gasolio 11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 20.9% 99.9%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 21.0% 100.0%
Euro 0 1 2 3 4 5 6 <i>Totale</i> Autobus Euro	Benzina 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	Gasolio 11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 20.9% 99.9% Gasolio	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%	11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 21.0% 100.0%
Euro 0 1 2 3 4 5 6 <i>Totale</i> Autobus Euro 0	Benzina 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Benzina 0.0%	Gasolio 11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 20.9% 99.9% Gasolio 3.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Altro 0.0%	11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 21.0% 100.0% Totale 3.0%
Euro 0 1 2 3 4 5 6 Totale Autobus Euro 0 1	Benzina 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Benzina 0.0% 0.0%	Gasolio 11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 20.9% 99.9% Gasolio 3.0% 0.9%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% O.1% Altro 0.0% 0.0%	11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 21.0% 100.0% Totale 3.0% 0.9%
Euro 0 1 2 3 4 5 6 Totale Autobus Euro 0 1 2	Benzina 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	Gasolio 11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 20.9% 99.9% Gasolio 3.0% 0.9% 4.1%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 21.0% 100.0% Totale 3.0% 0.9% 5.6%
Euro 0 1 2 3 4 5 6 <i>Totale</i> Autobus Euro 0 1 2 3	Benzina 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	Gasolio 11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 20.9% 99.9% Gasolio 3.0% 0.9% 4.1% 8.7%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% Altro 0.0% 0.0% 1.5% 1.0%	11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 21.0% 100.0% Totale 3.0% 0.9% 5.6% 9.7%
Euro 0 1 2 3 4 5 6 Totale Euro 0 1 2 3 4 4 5 4 4 5 4 4 4 4 4 5 6 4 4 6 6 6 6 6	Benzina 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	Gasolio 11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 20.9% 99.9% Gasolio 3.0% 0.9% 4.1% 8.7% 4.9%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% Altro 0.0% 0.0% 1.5% 1.0% 0.0%	11.2% 2.5% 12.6% 21.6% 5.9% 25.1% 21.0% 100.0% Totale 3.0% 0.9% 5.6% 9.7% 4.9%

<u>Motocicli</u>				
Euro	Benzina	Gasolio	Altro	Totale
0	20.4%	0.0%	12.6%	33.1%
1	9.8%	0.0%	1.6%	11.4%
2	10.4%	0.0%	0.8%	11.2%
3	35.4%	0.0%	1.6%	37.0%
4	7.2%	0.0%	0.1%	7.3%
Totale	<i>83.3</i> %	0.0%	<i>16.7%</i>	100.0%
Totale pard	o circolante	e provincial	<u>e</u>	
Euro	Benzina	Gasolio	Altro	Totale
0	6.9%	1.1%	1.9%	9.8%
1	2.5%	0.4%	0.3%	3.1%
2	5.2%	2.2%	0.2%	7.6%
3	7.9%	7.2%	0.3%	15.4%
4	12.8%	13.2%	1.2%	27.2%
-				
5	5.8%	15.1%	0.5%	21.4%

48.9% Tabella 4: Percentuale delle macroclassi di veicoli, parco circolante provinciale 20188.

5.0%

100.0%

46.1%

Totale

Le singole sottoclassi di veicoli sono quindi definite da: macroclasse (auto, veicolo commerciale leggero, ...), combustibile e classe Euro.

3.2.2. Consistenza parco circolante al 2023 e politiche di parziale divieto di circolazione

Per gli scenari futuri è necessario fare una proiezione sulle nuove immatricolazioni, che comportano delle variazioni del parco macchine tra le varie classe Euro ed i tipi di alimentazione.

In particolare per le autovetture si sono analizzati i dati sui mezzi immatricolati nel 2017 e nel 2018, dove si osservano principalmente le seguenti variazioni, Figura 4: per le classi Euro 0 e 1 si mantiene un andamento costante (si tratta tipicamente di veicoli vecchi che circolano poco e mantenuti dai proprietari); mentre per gli Euro 2, 3, 4 e 5 si registra un leggero calo compensato da un sensibile aumento degli Euro 6. Sempre in Figura 4 si osserva un andamento costante delle tipologie di carburanti convenzionali (benzina, gasolio, GPL), dall'altra parte l'ibrido e l'elettrico puro presentano un leggero aumento.

Pertanto nell'ipotesi di caratterizzare opportunamente il rinnovo del parco circolante per il 2023 si sono ipotizzati stabili i trend già registrati tra 2017-2018.

Lo stesso approccio è stato utilizzato per le altre macroclassi (mezzi commerciali, autobus, motocicli), anche se con modalità più aggregata, mancando dettagli sugli andamenti specifici previsti.

^{8.} Per Alimentazione "altro" si intende metano, GPL, elettrico, ibrido e miscela per i motocicli.

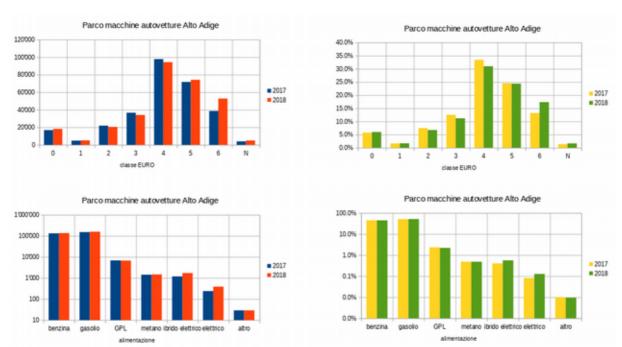


Figura 4: Distribuzione del parco macchine altoatesino per gli anni 2017 e 2018.

Inoltre, come già presentato nel capitolo 2.3, sussiste l'ordinanza del 03.09.2018 "Misure per la limitazione dell'inquinamento dell'aria derivante delle emissioni di NO_x - Ossidi di azoto adottate in accordo con il Piano provinciale della qualità dell'aria ed il Programma per la riduzione dell'inquinamento da NO_2 2018-2023"; in vigore da luglio 2019. Pertanto il parco macchine circolante nella zona della città di Bolzano viene influenzato dalle politiche di parziale divieto di circolazione per tutti i veicoli EURO 0, EURO 1, EURO 2 diesel e EURO 3 diesel, per cui nello scenario futuro 1, business as usual, si ipotizza che questa situazione sia operativa al 2023. Per lo scenario futuro 2 si inserisce anche l'opzione più stringente di divieto parziale di circolazione anche per tutti i veicoli EURO 4 diesel. In Figura 5 è presentata la distribuzione di frequenza delle varie classi Euro, suddivise tra leggeri e pesanti, per i vari parchi macchine circolanti in città a Bolzano. Si evidenzia come per i veicoli leggeri nelle classi Euro 3, 4 e 5 calino (poiché diminuiranno i veicoli diesel) e si spostino più su Euro 6.

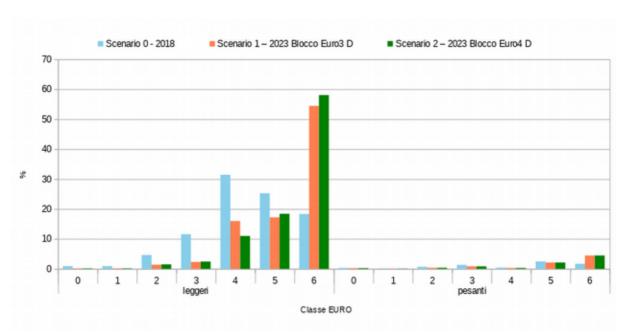


Figura 5: distribuzione percentuale delle classi euro dei parchi macchine per i tre scenari considerati.

3.3. Stima delle emissioni

Per stimare le emissioni di inquinanti da traffico si utilizza il modello Copert V, dal quale si ricavano i fattori di emissione, con riferimento agli inquinanti NO_X e PM10. Per ogni tipologia di inquinate, veicolo e classe EURO viene infatti fornita dall'algoritmo Copert V una curva emissiva in funzione della velocità di percorrenza (v), per cui ogni fattore di emissione i calcola nella forma:

$$EF = \frac{\alpha v^2 + \beta v + \gamma + \delta/v}{\epsilon v^2 + \zeta v + \eta} ,$$

in cui i coefficienti (α , β , γ , δ , ϵ , ζ , η) variano appunto per ogni sottoclasse di veicolo considerata.

Moltiplicando i fattori di emissione per la numerosità del campione (parco macchine immatricolato) e ulteriormente per i veicoli transitanti su un tratto stradale si ottiene l'emissione specifica del tratto di strada nella forma:

$$E=T\sum_{i}EF_{i}p_{i}$$
 , dove

T = transiti [veh/h]

 p_i = percentuale di una classe veicolare sul totale [%]

 EF_i = fattore di emissione di una classe veicolare [g/km]

 $E = \text{emissione specifica di un tratto di strada } [g/(km \cdot h)]$

In Tabella 5 sono riportate le emissioni di NO_x e PM10 per lo scenario attuale al

2018 (scenario 0) e per gli scenari futuri al 2023 (scenario 1, 2) per ogni arco stradale .

EMISSIONI	Scena	rio 0	Scena	Scenario 1		Scenario 2	
Nome Strada	NOx	PM10	NOx	PM10	NOx	PM10	
	[g/(km h)]		[g/(km h)]		[g/(km h)]		
CORSO DELLA LIBERTA / FREIHEITSSTRASSE	6'269	147	5'410	75	5'009	57	
CORSO ITALIA / ITALIENALLEE	8'152	192	7'026	98	6'505	74	
GALLERIA DEL VIRGOLO / VIRGL TUNNEL	14'031	329	12'010	165	11'139	124	
PIAZZA ADRIANO	10'371	245	8'938	124	8'275	94	
PIAZZA GIUSEPPE MAZZINI / GIUSEPPE-MAZZINI-PLATZ	6'327	149	5'488	77	5'075	59	
PIAZZA GIUSEPPE VERDI / GIUSEPPE-VERDI-PLATZ	11'114	261	9'513	131	8'823	98	
PIAZZA GRIES / GRIESER PLATZ	7'257	171	6'227	86	5'772	65	
PIAZZA VITTORIA	8'872	209	7'696	108	7'117	83	
PONTE DRUSO / DRUSUSBRCKE	11'757	277	10'198	143	9'431	110	
PONTE PALERMO / PALERMOBRCKE	12'560	296	10'895	152	10'075	117	
PONTE RESIA	11'984	282	10'395	145	9'613	112	
PONTE ROMA / ROMBRCKE	22'525	531	19'538	273	18'068	210	
PONTE TALVERA / TALFERBRCKE	11'385	268	9'876	138	9'133	106	
PONTE VIRGOLO	10'074	236	8'622	119	7'997	89	
SS 42 / SS42	8'420	199	7'132	98	6'626	73	
VIA ALBERT EINSTEIN / ALBERT-EINSTEIN-STRASSE	15'421	362	13'184	181	12'230	136	
VIA ALESSANDRO VOLTA / ALESSANDRO-VOLTA-STRASSE	4'668	110	3'996	55	3'706	41	
VIA ANTONIO PACINOTTI / ANTONIO-PACINOTTI-STRASSE	10'213	240	8'741	120	8'108	90	
VIA ANTONIO ROSMINI / ANTONIO-ROSMINI-STRASSE	3'555	84	3'083	43	2'852	33	
VIA ARMANDO DIAZ / ARMANDO-DIAZ-STRASSE	8'954	211	7'766	109	7'182	83	
VIA BARI	6'769	160	5'872	82	5'430	63	
VIA BRENNERO	8'220	193	7'036	97	6'526	73	
VIA BUOZZI	6'436	151	5'509	76	5'109	57	
VIA CAGLIARI	8'006	189	6'944	97	6'422	75	
VIA CASTEL FIRMIANO / SIGMUNDSKRONER STRASSE	11'996	283	10'160	139	9'439	104	
VIA CLAUDIA AUGUSTA	7'582	178	6'517	90	6'038	68	
VIA DEL MACELLO	7'405	174	6'338	87	5'879	65	
VIA ENRICO MATTEI / ENRICO-MATTEI-STRASSE	5'063	119	4'318	59	4'008	44	
VIA EVANGELISTA TORRICELLI / EVANGELISTA- TORRICELLI-STRASSE	14'782	347	12'652	174	11'735	131	
VIA FIRENZE	3'927	92	3'373	47	3'126	35	
VIA GALILEO GALILEI / GALILEO-GALILEI-STRASSE	17'863	419	15'290	210	14'181	158	
VIA GIUSEPPE GARIBALDI / GIUSEPPE-GARIBALDI- STRASSE	7'446	175	6'373	88	5'911	66	
VIA GUGLIELMO MARCONI / GUGLIELMO-MARCONI- STRASSE	9'831	231	8'415	116	7'805	87	
VIA INNSBRUCK / INNSBRUCKER STRASSE	10'515	247	8'998	124	8'346	93	
VIA LORENZ BHLER / LORENZ-BHLER-STRASSE	9'545	225	8'084	111	7'511	83	
VIA LUIGI CADORNA / LUIGI-CADORNA-STRASSE	5'899	139	5'117	71	4'732	55	
VIA LUIGI GALVANI / LUIGI-GALVANI-STRASSE	8'061	189	6'899	95	6'399	71	
VIA MASO DELLA PIEVE / PFARRHOFSTRASSE	9'499	224	8'169	113	7'567	85	
VIA MAYR NUSSER	7'745	182	6'629	91	6'149	68	

EMISSIONI	Scenario 0		Scenario 1		Scenario 2	
Nome Strada	NOx	PM10	NOx	PM10	NOx	PM10
	[g/(km h)]		[g/(km h)]		[g/(km h)]	
VIA MERANO / MERANER STRASSE	12'350	291	10'637	148	9'849	111
VIA OLTRADIGE / UEBERETSCHER STRASSE	8'420	199	7'132	98	6'626	73
VIA PALERMO / PALERMOSTRASSE	8'251	194	7'157	100	6'619	77
VIA PIANI DI BOLZANO	8'087	190	6'922	95	6'420	71
VIA RENCIO	5'634	132	4'822	66	4'473	50
VIA RENON	6'593	155	5'643	78	5'234	58
VIA RENON / RITTNER STRASSE	6'968	164	5'965	82	5'532	62
VIA RESIA	7'734	182	6'642	92	6'155	69
VIA ROMA / ROMSTRASSE	12'226	288	10'585	148	9'792	113
VIA SAN MAURIZIO / MORITZINGER WEG	8'694	204	7'460	103	6'915	77
VIA SAN QUIRINO	5'150	121	4'467	62	4'131	48
VIA TORINO	6'646	157	5'765	81	5'331	62
VIA TORRICELLI	16'331	383	13'978	192	12'964	144
VIA VENEZIA	5'471	129	4'746	66	4'389	51
VIA VINCENZO LANCIA / VINCENZO-LANCIA-STRASSE	8'517	200	7'290	100	6'762	75
VIA VITTORIO VENETO / VITTORIO-VENETO-STRASSE	8'694	204	7'460	103	6'915	77
VIA WERNER VON SIEMENS / WERNER-VON-SIEMENS- STRASSE	16'933	397	14'494	200	13'443	150
VIALE DRUSO	9'285	219	8'020	112	7'422	85
VIALE DRUSO / DRUSUSALLEE	11'942	281	10'286	143	9'524	108
VIALE TRIESTE	4'493	106	3'897	54	3'604	42
SVINCOLI BOLZANO SUD	10'287	242	8'834	122	8'605	96
MEBO	21'371	580	17'534	259	17'018	203
A22	25'873	651	25'430	575	25'430	575

Tabella 5: Dettaglio delle emissioni da traffico per le principali strade di Bolzano, per gli scenari di screening.

Osservando le emissioni associate ad ogni strada urbane si riscontra, per tutti e due gli scenari futuri, un calo delle emissioni. Per lo scenario 1 l'aumento delle percorrenze è ampiamente compensato dal naturale rinnovo del parco circolante nel corso dei cinque anni e dalle politiche di divieto di circolazione fino agli EURO 3 Diesel. Allo stesso modo per lo scenario 2 il calo delle emissioni è dovuto alla variazione del parco circolante derivante dal naturale rinnovo dello stesso e dalle politiche di divieto di circolazione fino agli EURO 4 Diesel.

4. Simulazioni di dispersione

Il modello di calcolo di screening basato su R-Line simula la dispersione di soli inquinanti passivi poiché non è dotato di schema chimico: le simulazioni sono state quindi effettuate disperdendo NO_X dalle fonti lineari e ottenendo come risultato la distribuzione di concentrazione degli ossidi di azoto totali. Per passare alla più rilevante informazione della distribuzione di NO_2 , è stata applicata ai risultati la formula di Romberg 9 , che consente di ottenere, per mezzo di una

^{9.} Romberg, E., Bösinger, R., Lohmeyer, A., Ruhnke, R. & Röth, R., NO-NO2-Umwandlung für die Anwendung bei Immissionsprognosen für Kfz-Abgase – Gefahrstoffe. Reinhaltung der Luft, 56, pp.

parametrizzazione, la distribuzione del biossido di azoto, NO₂.

I modelli di calcolo presentati sono stati utilizzati nella presente analisi per ricostruire il campo di concentrazione oraria media annua di biossido di azoto e polveri sulla città di Bolzano, dovuto alle sole fonti lineari principali.

Per ottenere il totale di concentrazione di NO₂ (e PM10) sulla città sono stati sommati a tali risultati, i risultati delle simulazioni effettuate con CALPUFF nel lavoro "Calcolo delle concentrazioni nel sottodominio urbano / comprensoriale 2E", corrispondente all'attività 6b nell'ambito del contratto "Attività specialistica di consulenza nella valutazione della qualità dell'aria".

4.1. Dominio di calcolo

Il dominio di calcolo utilizzato per le simulazioni è stato impostato in relazione al reticolo emissivo selezionato ed ha quindi forma irregolare (Figura 1 e capitolo 6 - Tavole 1 e 2). Per la città di Bolzano, il dominio è di circa 28 km², e si estende per un massimo di circa 6.9 km in direzione nord-sud e per un massimo di circa 8.5 km in direzione est-ovest.

4.2. Dati meteorologici

I dati meteorologici in input al modello applicato derivano dai risultati ottenuti "Elaborazione campi nell'analisi dei meteorologici nei urbani/comprensoriali 1A, 1B, 1C, 2A e 2C", corrispondente all'attività 3a nell'ambito del contratto "Attività specialistica di consulenza nella valutazione della qualità dell'aria". In tale analisi sono stati prodotti dati meteorologici mediante una catena modellistica WRF-CALMET, raggiungendo una risoluzione di 100 m, per l'intero anno 2013 (considerato un anno meteorologicamente rappresentativo). Sulla base delle informazioni e del formato richiesti dal modello, è stata effettuata un'opportuna estrazione di dati dal database meteorologica per rendere possibili le simulazioni. In particolare ad ogni strada è stata associata la rosa dei venti corrispondente al centro cella più prossimo della simulazione WRF-CALMET.

5. Risultati

Dal reticolo emissivo della città di Bolzano, così come modellato nel presente lavoro, si produce la concentrazione media annua di NO_2 e PM10 dovuta alla dispersione, per ognuno dei tre scenari studiati (Scenario 0, 1 e 2), per le diverse tipologie di sorgenti emissive:

- traffico delle strade principali,
- traffico dell'A22,
- altre sorgenti industria, riscaldamento, traffico diffuso, fondo,
- totale delle sorgenti.

Si è deciso di inserire all'interno dello studio di screening anche la sorgente emissiva dell'autostrada A22, che attraversa la città di Bolzano. Le emissioni prodotte dal traffico transitante sull'autostrada è completamente svincolata delle politiche pianificatorie su viabilità e mobilità cittadina; invece risente di politiche nazionali o sovranazionali di spostamento di merci e di scelte di mercato. Pertanto, pur essendo una sorgente di emissioni dovuta al traffico, è stata considerata separatamente rispetto al reticolo delle strade comunali ed extracomunali. In questi ultimi due casi, invece, le politiche e i programmi di viabilità e mobilità incidono in maniera diretta, sulla viabilità comunale, ed in maniera indiretta sulla viabilità extra-comunale dove vengono particolarmente condizionati gli spostamenti dei flussi pendolari. Le emissioni derivanti dall'asse autostradale sono state calcolate usando dati compatibili con quanto contenuto nell'attuale inventario delle emissioni provinciali (INEMAR).

Nel capitolo 6 è riportato l'elenco delle Tavole allegate, delle quali le tavole di concentrazioni medie annua sono le Tavole dalla 12 alla 23. Di seguito si analizzano nel dettaglio i risultati di dispersione per l'inquinante NO₂, mentre per l'inquinante PM10 si allegano nel capitolo 6 le Tavole dalla 24 alla 32.

5.1. Concentrazioni medie annue di NO₂ da sorgente traffico strade principali

Dalle mappe di concentrazione di NO_2 derivanti da sorgenti di traffico principale (Tavole dalla 12 alla 14) si osserva come le concertazioni siano elevate sui principali assi stradali, quindi alle sorgenti delle emissioni, e vadano via via calando allontanandosi da esse, quindi le immissioni in aria ambiente sono più diluite.

I punti più critici si osservano agli sbocchi delle gallerie presenti sul territorio comunale: galleria del Virgolo, galleria Castel Firmiano della MeBo e galleria di San Giacomo. In questi punti localmente le concentrazioni superano i 40 μ g/m³: tale situazione si verifica in tutti gli scenari studiati ed è dovuta alla impossibilità di disperdere le emissioni prodotte all'interno delle gallerie, se non agli sbocchi delle stesse. Queste situazioni persistono nel tempo e possono essere risolte solo con eventuali interventi puntuali, ad esempio con la ventilazione e aspirazione da camini interni alle gallerie.

Osservando la restante viabilità, si stimano delle concentrazioni elevate anche in altre zone, in particolare le elevate emissioni di alcune arterie stradali essenziali per la viabilità interna della città portano a alte concentrazioni di NO_2 generate dal traffico, le vie con maggiore impatto sono: l'arginale (via Innsbruck), via Galilei, ponte e via Roma, ponte Palermo (lato Zona Industriale), via Einstein e tratto iniziale della MeBo partendo dall'uscita di Bolzano Sud. Si stimano concentrazioni superiori ai $30~\mu\text{g/m}^3$. Le tratte più congestionate per la zona del centro cittadino sono via Roma, viale Druso, oltre alla zona di Piazza Verdi e via Nusser.

Come già osservato nel capitolo 3.3 Stima delle emissioni da sorgenti di traffico delle strade principale per lo scenario 1 si osserva che la concentrazione media NO₂ cala, anche con aumento del traffico, consequentemente al rinnovo del parco circolante e alle politiche di parziale divieto di circolazione. Per lo scenario 2 la concentrazione media NO2 migliora significativamente su tutto il territorio comunale, in quanto gli interventi dei piani legati al PUMS portano ovunque una sensibile riduzione delle emissioni da traffico. Partendo dalle concentrazioni stimate nello scenario 0, stato attuale, e arrivando alle concentrazioni previste per gli scenari futuri: scenario 1, business as usual, e scenario 2, interventi programmati, le concentrazioni lungo la viabilità principale pur rimanendo riducono sensibilmente, generando una diminuzione concentrazioni anche nelle zone limitrofe. Si osserva come nello scenario 1 e 2 rimangono superiori al valore di 40 μg/m³ solamente le concentrazioni agli sbocchi delle gallerie (galleria del Virgolo, galleria Castel Firmiano della MeBo e galleria di San Giacomo) con un'area di impatto ridotta quasi solo sulle carreggiate stradali.

5.2. Concentrazioni medie annue di NO₂ da sorgente traffico strade della A22

Nelle Tavole 15, 16 e 17 sono presentate le concentrazioni derivanti dal traffico transitante lungo l'asse autostradale del Brennero (A22) nel tratto della città di Bolzano. Nelle ipotesi fatte per i tre scenari oggetto di screening, si è ipotizzato uno stesso aumento di traffico per gli scenari 1 e 2 rispetto allo scenario 0 ed un rinnovo del parco circolante. Le emissioni stimate con tali ipotesi generano valori molto simili per tutti e tre gli scenari, pertanto anche le concentrazioni derivanti hanno valori che variano poco tra lo scenario attuale e due scenari futuri.

Osservando i valori di concentrazione nelle mappe si osserva come sulla maggior parte della tratta autostradale cittadina le concentrazioni sulla carreggiate sono mediamente superiori a 35 μ g/m³ inoltre alle bocche della galleria del Virgolo dell'A22 sono stimate concertazioni maggiori di 40 μ g/m³. Le concentrazioni poi calano abbastanza rapidamente spostandosi dall'asse stradale: ad esempio ad una distanza di 50 m dall'asse autostradale si stimano valori dell'ordine di 10-15 μ g/m³ e ad una distanza di 100 m le concentrazioni calano a 5-10 μ g/m³.

5.3. Concentrazioni medie annue di NO2 da altre sorgenti

Oltre alle concentrazioni derivanti da emissioni da traffico principale, sulla città

di Bolzano, è necessario considerare anche alle concentrazioni dovute a tutte le altre sorgenti: sorgenti diffuse (riscaldamento, attività produttive, traffico diffuso), sorgenti puntuali, e il fondo ambientale. Il contributo di tali sorgenti emissive (denominate "altre sorgenti" a seguire) è stato ottenuto dai risultati del lavoro "Calcolo delle concentrazioni nel sottodominio urbano / comprensoriale 2E", corrispondente all'attività 6b nell'ambito del contratto "Attività specialistica di consulenza nella valutazione della qualità dell'aria", con il quale le concentrazioni medie annue di NO₂ sono state ricavante mediante il modello di dispersione CALPUFF.

Le concentrazioni dovute alle altre sorgenti sono riportate nelle Tavole dalla 18 alla 20, dove si osserva che le concentrazioni maggiori, inferiori comunque a 22 $\mu g/m^3$, sono localizzate in corrispondenza delle zone ad alta densità abitativa, dove le emissioni da riscaldamento sono elevate, e nelle zone industriali, dove a pesare sono invece il traffico diffuso e le attività produttive.

5.4. Concentrazioni medie annue di NO2 totali

Le concentrazioni medie annue totali di NO₂ si ottengono dalla somma di tutti i contributi generati dalle diverse fonti emissive: traffico lineare principale, traffico A22 e altre sorgenti.

Nelle Tavole 21,22 e 23 si osserva che le concentrazioni risultano molto elevate (superiori a 45 μ g/m³) in corrispondenza di numerose sedi stradali ma risultano critiche, per la qualità dell'aria ambiente, nei punti in cui esse risultano elevate anche al di fuori delle sorgenti stesse. Tale occorrenza si verifica principalmente in alcune macroaree:

- · la zona industriale più prossima all'Isarco, dal Virgolo fino a via Volata
- la zona degli svincoli della MeBo e A22 che si prolunga con via Einstein e la bocca della galleria di San Giacomo
- la zona circostante via Roma e viale Druso, e l'area compresa tra via Palermo, via Torino e via Firenze
- a nord del Virgolo, in sinistra idrografica rispetto all'Isarco dove sono molto prossime A22 e SS 12.

Per quanto riguarda la zona industriale, le concentrazioni maggiori di NO_2 risultano interessare tutta la fascia circostante l'arginale e l'asse autostradale, dove gli impatti delle due strade, singolarmente già intensamente percorse, vanno a sommarsi. In particolare si tratta della zona a nord di via Volta, intorno a via Siemens, via Pacinotti e via Lancia, l'area circostante via Galilei e lo snodo di via/ponte Roma. Le zone interne alle intersezioni fra queste vie risultano caratterizzate da concentrazioni medie elevate di NO_2 superiori ai 40-45 μ g/m³. Sempre nella stessa zona insistono anche i portali delle gallerie del Virgolo di A22 e di via Innsbruck. La zona di elevate concentrazioni si estende anche oltre il corso dell'Isarco, nel lato del centro cittadino, qui si sommano poi i contributi delle altre sorgenti e della viabilità urbana.

Per quanto riguarda la seconda area critica, essa interessa in particolar modo i dintorni di via Roma e ponte Roma e gli edifici che risultano inclusi fra via Roma, via Torino e via Palermo: in questa zona le concentrazioni un pò superiori a 40 $\mu g/m^3$ per lo scenario 0, mentre scendono attorno ai valori di 35 $\mu g/m^3$ per gli scenari 1 e 2.

5.5. Confronto tra le concentrazioni di NO₂ per gli scenari studiati

Al fine di facilitare il confronto tra gli scenari si sono calcolate anche le variazioni degli scenari futuri rispetto sia allo scenario 0 (stato attuale al 2018, Tabella 6), sia allo scenario 1 (business as usual al 2023, Tabella 7). Osservando la concentrazione di biossido di azoto degli scenari futuri rispetto allo scenario 0, nella zona interessata allo studio, si evidenza un sensibile calo delle concentrazioni dovute al traffico delle strade principali, e conseguentemente delle concentrazioni totali. Come prevedibile maggiori saranno gli interventi messi in atto nei prossimi anni, come previsti negli altri piani collegati al PUMS, maggiori saranno i benefici a livello di impatto dell'inquinante NO₂. Quindi con lo scenario 2 si potrà avere una riduzione di circa il 16% delle concentrazioni di NO₂ dovute al traffico principale, e una riduzione di circa il 7% delle concentrazioni totali.

Variazione rispetto allo scenario 0 (stato attuale al 2018) delle	Scenario 1	Scenario 2		
concentrazioni di NO₂	Business as usual	Interventi programmati		
Strade principali	-11.7%	-16.4%		
Totale comunale	-5.3%	-6.8%		

Tabella 6: Confronto rispetto allo scenario 0 (stato attuale al 2018) degli impatti del NO₂ sugli scenari futuri sul territorio del comune di Bolzano.

Anche dal confronto tra lo scenario futuro 2 rispetto allo scenario 1, business as usual, si evince che le misure previste dai piani collegati al PUMS incidono positivamente sulla situazione del traffico di Bolzano e sulla riduzione di NO₂, portando ad un ulteriore miglioramento.

Variazione rispetto allo scenario 1	Scenario 2			
(business as usual al 2023) delle concentrazioni di NO₂	Interventi infrastrutturali			
Strade principali	-5.3%			
Totale comunale	-1.7%			

Tabella 7: Confronto tra lo scenario futuro degli interventi programmati rispetto allo scenario 1 (business as usual 2023) degli impatti del NO₂ sul territorio del comune di Bolzano.

Le mappe delle variazioni presentate nel seguente capitolo 6, Tavole dalla 33 alla 38, rappresentano le differenze percentuali di concentrazione già qui sopra riassunte nelle tabelle, sia dal punto di vista della distribuzione spaziale che dal punto di vista quantitativo delle concentrazioni di inquinante.

6. Tavole

Mappa di inquadramento

- Tavola 1 Dominio di calcolo, reticolo stradale emissivo Bolzano Centro
- Tavola 2 Dominio di calcolo, reticolo stradale emissivo Bolzano Sud Mappe del Traffico Giornaliero Medio:
 - Tavola 3 Traffico Giornaliero Medio Scenario 0 2018
 - Tavola 4 Traffico Giornaliero Medio Scenario 1 2023
 - Tavola 5 Traffico Giornaliero Medio Scenario 2 2023

Mappe delle emissioni di NO_x e PM10:

- Tavola 6 Emissioni di NO_x Scenario 0 2018
- Tavola 7 Emissioni di NO_x Scenario 1 2023
- Tavola 8 Emissioni di NO_x Scenario 2 2023
- Tavola 9 Emissioni di PM10 Scenario 0 2018
- Tavola 10 Emissioni di PM10 Scenario 1 2023
- Tavola 11 Emissioni di PM10 ScenNO2ario 2 2023

Mappe delle concentrazioni medie annue di NO₂ e PM10:

- Tavola 12 Concentrazioni di NO₂ Scenario 0 2018 traffico
- Tavola 13 Concentrazioni di NO₂ Scenario 1 2023 traffico
- Tavola 14 Concentrazioni di NO₂ Scenario 2 2023 traffico
- Tavola 15 Concentrazioni di NO₂ Scenario 0 2018 traffico A22
- Tavola 16 Concentrazioni di NO₂ Scenario 1 2023 traffico A22
- Tavola 17 Concentrazioni di NO₂ Scenario 2 2023 traffico A22
- Tavola 18 Concentrazioni di NO₂ Scenario 0 2018 altre sorgenti
- Tavola 19 Concentrazioni di NO₂ Scenario 1 2023 altre sorgenti
- Tavola 20 Concentrazioni di NO₂ Scenario 2 2023 altre sorgenti
- Tavola 21 Concentrazioni di NO₂ Scenario 0 2018 totali
- Tavola 22 Concentrazioni di NO₂ Scenario 1 2023 totali
- Tavola 23 Concentrazioni di NO₂ Scenario 2 2023 totali
- Tavola 24 Concentrazioni di PM10 Scenario 0 2018 traffico
- Tavola 25 Concentrazioni di PM10 Scenario 1 2023 traffico
- Tavola 26 Concentrazioni di PM10 Scenario 2 2023 traffico
- Tavola 27 Concentrazioni di PM10 Scenario 0 2018 traffico A22
- Tavola 28 Concentrazioni di PM10 Scenario 1 2023 traffico A22
- Tavola 29 Concentrazioni di PM10 Scenario 2 2023 traffico A22
- Tavola 30 Concentrazioni di PM10 Scenario 0 2018 totali

- Tavola 31 Concentrazioni di PM10 Scenario 1 2023 totali
- Tavola 32 Concentrazioni di PM10 Scenario 2 2023 totali

Mappe delle variazioni di concentrazioni medie annue di NO₂ e PM10:

- Tavola 33 Variazione concentrazioni di NO₂ Scenario 1 Scenario 0 traffico
- Tavola 34 Variazione concentrazioni di NO₂ Scenario 2 Scenario 0 traffico
- Tavola 35 Variazione concentrazioni di NO₂ Scenario 2 Scenario 1 traffico
- Tavola 36 Variazione concentrazioni di NO₂ Scenario 1 Scenario 0 totali
- Tavola 37 Variazione concentrazioni di NO₂ Scenario 2 Scenario 0 totali
- Tavola 38 Variazione concentrazioni di NO₂ Scenario 2 Scenario 1 totali